|                                         | Cartesian curve                                                                                                     | Parametric curve                                                                                                              | Polar curve                                                                                                                                                                         |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surface<br>area of<br>revolution<br>(S) | $2\pi \int_{a}^{b} y \frac{ds}{dx} dx$ (about the x-axis) $2\pi \int_{c}^{d} x \frac{ds}{dy} dy$ (about the y-axis) | $2\pi \int_{t_1}^{t_2} y \frac{ds}{dt} dt$ (about the x-axis) $2\pi \int_{t_1}^{t_2} x \frac{ds}{dt} dt$ (about the y-axis)   | $2\pi \int_{\theta_1}^{\theta_2} r \sin \theta  \frac{ds}{d\theta}  d\theta$                                                                                                        |
| Volume<br>of<br>revolution<br>(V)       | $\pi \int_{a}^{b} y^{2} dx$ (about the x-axis) $\pi \int_{c}^{d} x^{2} dy$ (about the y-axis)                       | $\pi \int_{t_1}^{t_2} y^2 \frac{dx}{dt} dt$ (about the x-axis) $\pi \int_{t_1}^{t_2} x^2 \frac{dy}{dt} dt$ (about the y-axis) | $\frac{2\pi}{3} \int r^3 \sin \theta \ d\theta$ (about the line $\theta = 0$ or x-axis) $\frac{2\pi}{3} \int r^3 \cos \theta \ d\theta$ (about the line $\theta = \pi/2$ or y-axis) |

## UNIT - VI DIFFERENTIAL EQUATIONS (D.E)

## Methods of solving the D.E at a glance

General form of the D.E : M(x, y) dx + N(x, y) dy = 0

|    | Form of the D.E                                                                                                                   | Method of solving / solution                                                          |
|----|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1  | Variables separable form<br>( Recapitulation )                                                                                    |                                                                                       |
| 1. | f(x)g(y)dx + F(x)G(y)dy = 0                                                                                                       | Divide by $g(y)F(x)$ and integrate.                                                   |
| 2. | $\frac{dy}{dx} = f(ax + by + c)$                                                                                                  | $Put \ ax + by + c = t$                                                               |
| 3. | $\frac{dy}{dx} = \frac{(ax+by)+c}{k(ax+by)+c'}$                                                                                   | $Put \ ax + by = t$                                                                   |
| II | Homogeneous form                                                                                                                  | -                                                                                     |
| 1. | M(x, y) and $N(x, y)$ are<br>homogeneous functions of the<br>same degree with or without the<br>involvement of terms with $(y/x)$ | Write the D.E in the form $\frac{dy}{dx} = -\frac{M(x, y)}{N(x, y)}$ and put $y = vx$ |

|    | If homogeneous functions are involved with x/y                                                                                    | Write $\frac{dx}{dy} = -\frac{N(x, y)}{M(x, y)}$                                                                                              |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
|    | ,                                                                                                                                 | and put $x = vy$                                                                                                                              |  |
| 2. | $\frac{dy}{dx} = \frac{ax + by + c}{a'x + b'y + c'}, \frac{a}{a'} \neq \frac{b}{b'}$                                              | Put $x = X + h$ , $y = Y + k$ With proper choice of $h$ and $k$ the D.E reduces to a homogeneous D.E in $X$ and $Y$ . Put $Y = VX$ and solve. |  |
| Ш  | Exact form                                                                                                                        |                                                                                                                                               |  |
| 1. | $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ must be satisfied.                                                | $\int M dx + \int N(y) dy = c$ is the solution.                                                                                               |  |
| 2. | When $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$ then                                                      | Multiply the D.E with I.F to make it exact.                                                                                                   |  |
|    | (a) If $\frac{1}{N} \left( \frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = f(x)$                          | $e^{\int f(x) dx}$ is the I.F                                                                                                                 |  |
|    |                                                                                                                                   | $e^{-\int g(y)dy}$ is the I.F                                                                                                                 |  |
|    | (b) $yf(xy)dx + xg(xy)dy = 0$                                                                                                     | $\frac{1}{Mx - Ny}$ is the LF                                                                                                                 |  |
|    | (c) M and N involving terms of the form $x^a y^b$                                                                                 | $x^a y^b$ is the I.F where a and b are found such that $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$                        |  |
| 3. | Identifying the standard exact differentials and putting the D.E in the form $c_1 d [f_1(x, y)] + c_2 d [f_2(x, y)] + \cdots = 0$ | $c_1 f_1(x, y) + c_2 f_2(x, y) + \cdots = c$ is the solution on integration                                                                   |  |
| IV | Linear form                                                                                                                       |                                                                                                                                               |  |
| 1. | $\frac{dy}{dx} + Py = Q  \text{where } P \text{ and } Q$ are functions of x.                                                      | Solution:<br>$y e^{\int P dx} = \int Q e^{\int P dx} dx + c$                                                                                  |  |
| 2. | $\frac{dx}{dy} + Px = Q \text{ where } P \text{ and } Q \text{ are } functions of y.$                                             | Solution:<br>$x e^{\int P dy} = \int Q e^{\int P dy} dy + c$                                                                                  |  |
| 3. | $f'(y)\frac{dy}{dx} + f(y)P = Q$<br>where $P = P(x)$ and $Q = Q(x)$                                                               | Put f(y) = t and differentiate w.r.t x.                                                                                                       |  |
| 4. | $f'(x)\frac{dx}{dy} + f(x)P = Q$ where $P = P(y)$ and $Q = Q(y)$                                                                  | Put $f(x) = t$ and differentiate w.r.t y.                                                                                                     |  |
| 4. | $f'(x)\frac{dx}{dy} + f(x)P = Q$ where $P = P(y)$ and $Q = Q(y)$                                                                  | Put f(x) = t and differentiate w.r.t y.                                                                                                       |  |

| 5. | $\frac{dy}{dx} + Py = Qy^n$ where $P = P(x)$ and $Q = Q(x)$  | Divide by $y^n$ and put $y^{1-n} = t$ and diff. w.r.t x.              |
|----|--------------------------------------------------------------|-----------------------------------------------------------------------|
| 6. | $\frac{dx}{dy} + Px = Q x^n$ where $P = P(y)$ and $Q = Q(y)$ | Divide by $x^n$ and put $x^{1-n} = t$ and differentiate $w.r.t$ $y$ . |
|    |                                                              |                                                                       |

## Inverse of a square matrix A

$$A^{-1} = \frac{1}{\mid A \mid} (Adj A)$$

# Normal form / canonical form of a matrix

(i) 
$$I_r$$
 (ii)  $\begin{bmatrix} I_r & 0 \end{bmatrix}$  (iii)  $\begin{bmatrix} I_r \\ 0 \end{bmatrix}$  (iv)  $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ 

where  $I_r$  is the identity matrix of order r.

# Rank of a matrix $A : \rho(A)$

 $\triangleright$   $\rho(A)$  = The number of nonzero rows in the row echelon/normal form of A Given a matrix A there always exist non singular matrices P and Q such that PAQ is in the normal form.

# Consistency of a system of equations AX = B

- The system is consistent if  $\rho[A] = \rho[A:B]$
- The system will have unique solution if  $\rho[A] = \rho[A:B] = n$ , n being the number of unknowns.
- The system will have infinite / many solutions if  $\rho[A] = \rho[A:B] = r < n$
- The system is inconsistent (does not have solution) if  $\rho[A] \neq \rho[A:B]$
- The system AX = 0 will have trivial solution  $(x_1 = 0 = x_2 = \cdots x_n)$  if  $\rho[A] = \rho[A:B] = n$ . The system will have nontrivial, infinite number of solutions if  $\rho[A] = \rho[A:B] = r < n$
- $\triangleright$  Gauss elimination method: In [A:B], A is reduced to the upper triangular form.
- $\triangleright$  Gauss Jordan method: In [A:B], A is reduced to the diagonal form.



BU THE MEMORY

## Eigen values and Eigen vectors of a square matrix A

- $|A \lambda I| = 0$  will give the charecteristic equations of A. Eigen vlues are obtained on solving this equation.
- A = AI[X] = [0] represents a system of equations. On solving this system of equations, eigen vector corresponding to each of the eigen value  $\lambda$  is obtained.

### Similarity of matrices and Diagonalisation

- If  $B = P^{-1}$  AP then B is said to be similar to A, where A and B are square matrices and P is a nonsingular matrix.
- $P^{-1}$   $AP = D = Diag(\lambda_1, \lambda_2, \lambda_3)$  where  $\lambda_1, \lambda_2, \lambda_3$  are the eigen values of A (A being a square matrix of order 3)
- $\Rightarrow$   $A^n = P D^n P^{-1}$  where  $D^n = Diag(\lambda_1^n, \lambda_2^n, \lambda_3^n)$

### Quadratic Form (Q.F)

- Quadratic form can be reduced to canonical form (sum of squares) by congruent / orthogonal transformation.
  - \* Rank (r) of the Q.F = Rank of the matrix of the Q.F
  - \* Index (p) of the Q.F = Number of positive terms in the canonical form
  - \* Signature of the Q.F = The difference between the number of positive and negative terms in the canonical form

#### Nature of the Quadratic Form

|    | Condition    | Nature of Q.F         | Canonical form                   | Remark on canonical form       |
|----|--------------|-----------------------|----------------------------------|--------------------------------|
| 1. | ·            | Positive definite     |                                  | Only positive terms (n terms). |
|    |              | Negative definite     | $-y_1^2-y_2^2\ldots-y_n^2$       | Only negative terms (n terms)  |
|    |              |                       |                                  | Only positive terms (r terms)  |
| 4. | r < n, p = 0 | Negative semi-definte | $-y_1^2 - y_2^2 - \dots - y_r^2$ | Only negative rerms (r terms   |

In all other cases the Q.F is said to be indefinite. Indefinite Q.F contains both positive and negative terms.